592

VI. CoNCLUSIONS

A periodic structure consisting of a linear array of
conducting disks has been investigated, both theoret-
ically and experimentally. The resonator experiments
have established the fact that nonradiating surface
waves propagate along the structure. These are slow
waves, that is, their phase velocity is less than the
phase velocity of an electromagnetic wave in an un-
bounded medium.

The propagation constants for the “dipole mode”
have been experimentally determined for structures of
different dimensions. By using the radiating aperture
approach, the beamwidth has been calculated when
these periodic structures are used as end-fire antennas.

Exact expressions for the field have been set up. Sub-
ject to certain approximations, a secular equation has
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been derived from which the propagation constants
may be calculated. Theoretical values are compared
with experiments.

The purity of the “dipole mode” on the disk structure
has been verified by means of perturbation experiments.
The disk line has thus been found suitable for use as
an end-fire antenna, provided the “dipole mode” is
efficiently excited, without a great amount of direct
radiation from the feeding end.
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The Sinusoidal Variation of Dissipation
Along Uniform Waveguides®

GEORGE PERSKY?

Summary—Standing waves in a waveguide with dielectric
and/or metal wall losses generally give rise to expressions for power
dissipation per unit length containing a term which is a sinusoidal
function of the distance along the waveguide. In the present paper
this phenomenon is explained and expressions for the dissipation are
derived. The development is carried out for TE and TM modes in a
uniform dielectric filled waveguide of arbitrary cross section, and
then again from the standpoint of transmission line theory. The
practical implications of the results are discussed.

INTRODUCTION

When a standing wave exists in a lossy waveguide,
the dissipation of power per unit length as a function
of distance can generally be described by the sum of
two terms, one of which is sinusoidal. While this fact has
occasionally been recognized in one form or another,'—®
it is commonly overlooked in practice, and no detailed
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treatment for the single mode case has, to the author’s
knowledge, been available. One can see intuitively
that wall losses are greatest at the points of maximum
magnetic field and dielectric losses at points of maxi-
mum electric field. Power attenuation in each traveling
wave is therefore not proportional to e¢f2e* as is often
assumed, and the improper use of such attenuation
factors can lead to serious errors in the calculation of
dissipation. This fact is not generally appreciated, al-
though it is well known that in a dissipative guide it is
not possible to speak of net power flow in terms of Pj,,
and Pis, since these quantities are not well defined.

The purpose of this paper is to provide a firm basis
for the accurate calculation of the distribution of dis-
sipation along the direction of propagation and to
point out the areas where calculations of this type are
indicated.

Fig. 1 shows a section of uniform dielectric filled
waveguide of arbitrary cross section with walls of
surface resistivity » and filled with a dielectric material
of conductivity ¢. The dissipation in this waveguide
will be found separately for the TE and TM mode
cases. The analysis will be carried out in terms of
normalized mode functions* (which, it is recognized,

* N. Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., M.I.T. Rad. Lab. Ser., vol. 10; 1951.
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are only approximate when the boundaries are not
truly lossless). A self-contained alternate discussion
deals with the problem from the transmission line point
of view.

dz

Fig. 1—Uniform dielectric filled waveguide.

TE MobEg

In terms of the normalized electric field mode func-
tions, the incident and reflected electric fields may be
written? as

E,(r) = Vi(z)e(p) M

where the subscripts 7 and 7 denote incident and re-
flected, respectively. Applying Maxwell’s second equa-
tion, one has

1
H;=—— VX [Vi)e(o)] 2)
T T T
which can be expanded as
1
H, = —— [VVi(z) X e(9) + V.(5V X e(0)].  (3)
T ]w“ T r

In accordance with the small loss assumption, voltage
changes over small distances depend almost entirely
on ¢+%? go that one can approximate

VV?(Z) =~ “T']';SV;(Z)ZO; (4)

where the minus sign corresponds to the incident wave,
and the plus sign to the reflected wave. Therefore,

Hy = Vi) + ;‘ZZO X e(p) + 27 e<9>]. (s)

Referring to Fig. 1, the power dissipated in a volume
filling the cross section and of differential length dz,
which will be denoted by —dP, is given by

—dP:dz[j{l Jo

where J, is the current density on the waveguide wall,
and Jy; the current density in the dielectric. Defining
D(2) as the dissipation per unit length at point z, one has

it [ 1] ©

dP 1
D(z) = _—z;z_:f |]w|2;'dl+f — | Jalzds. (D)
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Since Ji=cE and, under the small loss assumption,
| H| =|J.|, (7) may also be written in the form

D(z) = [lez—l-Hrl?fdl-i—fcr\Ez-{—E,

where E and H are recognized to be phasors as well as
vectors. Eq. (8) can therefore be expanded in terms of
its real and imaginary parts:

s, (®

D(z)zj [| ReH, + Re H,|* + | Im H, + Im H, |2)rds

+fo[[ Re E, + Re E,|* + | Im E, + Im E, ?]ds. (9)

When the zero of the z scale is, for convenience, chosen
at a voltage maximum, V,(z) and V,(z) may be written

V.(2) = Vi(z)e

Vi(5) = Vila)es, (10)

where Vi(z) and V3(z) are real positive amplitude fac-
tors. Substitution of (10) into (1) and (5) results in

(Re H, + Re H,)

_ [ﬁzO % e(e) cos Bz + v ¢ e<9>} V() — V)],
Wi W

(Im H; + Im H,)

cos Bz

- [15 20 X o(g) sin g5 + 2 v x e<9>_l Vi) + V4@,
Wi Wl i
(Re E,+ Re E,) = [Vi(2) + Va(2)]e(o) cos Bz,

(ImE, +Im E,) = [—=V1(3) + Va(2)]e(g) sinfz. (11)

It is seen that when these expressions are substituted
into (9) the cross terms typified by

Iiﬁ zo X e(g) cos ,BZ:H:Sin s v X e(g)]

W W

vanish and one obtains

1

(wp)?

D@ = (V2 + 7 Ja{ 8| e(e) |* + | V X e(e) [2]rdl

1
2V.V, 288 —— \% 2—-p%e 2\rdl
+ cos 28 (w’u)zf“ X e(p) ] g2 e(e) |2]

+ (V24 Va2 + 2V V3 cos Zﬁz)of | () |2ds, (12)

where, for convenience, the z dependence of Vy and V;
is no longer explicitly shown. The last integral is equal
to unity by definition. The other two integrals are
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constants of the problem, 7.e., they have no z depend-
ence. One can therefore define

¥

AY

Gy

I

[i | VX e(o) |2+ | e(e) lz]dl (13)
62

4

GzE’*“

1
77 [5—2 | VX e() |2~ |e(o) IZ]dl, (14)
where Z3 has been substituted for wu. In terms of Gy
and Gs, (12) gives the dissipation per unit length as

D(z) = (V24 V) (G1 + o) + 2ViV(Gz + o) cos 28z. (15)

Nothing has yet been said about the (exponentially
damped) z dependence of V; and V5,

Vi@ = Vi(0)e e, Va(z) = Vi(0)exs,

which, since the damping is small, may usually be
neglected. One can also express V, as II‘I Vi, where T'
is the reflection coefficient of the load. Eq. (15) may
therefore be rewritten such that the dependence of
D(z) on the termination becomes explicit.

D@ =Ve[(14+ | 0D (Gid6)+2]| T'| (Gato) cos 283]. (16)

It must be remembered that z is measured from a volt-
age maximum, #zot from the termination.

Eq. (16) shows that there is a periodic term in the
dissipation expression which depends on the load re-
flection coefficient magnitude. For a unity reflection
coefficient the variation in the dissipation is greatest.
In the absence of a reflected wave, dissipation is a sim-
ple exponential function of z. The constants G, and
G, are in general unequal; G; may even be zero. This
point appears to have been overlooked even by authors
who were aware of the basic phenomenon.5

TABLE I
VALUES OF G; AND G» FOR TE;9 MODE IN X-BAND WAVEGUIDE

Frequency G Gz
8 kmc 2.4 X10— 1.08 X104
10 kmc 1.12X10~* —5.8 X107
12 kme 5.4 X108 —1.56X1078

Table I gives typical values of G; and G, calculated
for an empty brass X-band waveguide operated in the
TE,;, mode. It is of interest to note that the sign of Ge
is positive at 8 kmc and negative at 10 kmc. Near 10
kmc G, and consequently the periodic part of the dissi-
pation, are vanishingly small. The physical explanation
for this is that the transverse and longitudinal mag-
netic field components of the traveling waves do not
add in phase. The transverse components add at what
are conventionally called current maxima and the longi-
tudinal components at the voltage maxima. In the 10-

5 H. E. King, “Rectangular waveguide theoretical CW average
power rating,” IRE Trans. oN MicrowaveE THEOrRY AND TECH-
NIQUES, vol. MTT-9, pp. 349-357; July, 1961, See especially p. 356.
Eq. (21) is inapplicable in the TE mode case.
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kmc region, the contributions of the two components
to the dissipation are about equal, so that G, is small
and dissipation occurs relatively uniformly along the
waveguide. Above 10 kmc the transverse component is
predominant, G, is negative, and maximum dissipation
occurs at the current maxima. Below 10 kmc the longi-
tudinal component is mainly responsible for the power
loss so that G, is positive and the maximum dissipation
coincides with the voltage maxima.

TM Mobe

The analysis in the TM case is carried out in the
same way as that in the TE case and only the results
need be stated here.

D(z) = (V2 + VA)(Gs + o) + 2ViVy(Gs + o) cos 28z, (17)
where

Gs = —G4§—;f]vxh(g)12ds

4
+Z.;flh(9)l dl.

Here h(g) is the normalized magnetic field mode func-
tion.* Eq. (17) may also be expressed in terms of the
reflection coefficient of the termination. When this has
been done, the TE and TM cases may be summarized
in the equation

D@ = Ve[ + [ T[)(G; +o)
+ 2| 1] (Gz + o) cos 262]7E. (19)

(18)

TRANSMISSION LINE APPROACH

The dissipation per unit length can also be derived
using the solution of the transmission line equations as
a starting point. The result is equally applicable to
TE, TM and TEM mode transmission lines.

It is well known that for a transmission line charac-
terized by Z, a series impedance per unit length, and ¥,
a shunt admittance per unit length, the voltage and
current solutions may be written

V = Aev* + Ber* (20)
I = Y,[Ae* — Ber? (21)
where
y=a+j8=vVYVZ (22)
Yo=VY/Z. (23)

To a very good approximation the choice of =0 at a
voltage maximum assures that both 4 and B be real
and positive.

The (complex) power flow toward the load at any
point 2 is

Po(z) = V(5)I*(2), (24)
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and the (complex) dissipation which is the decrease in
P.(2) with z is

dP, AV I¥)
— = — 2. (25)
dz dz
Substitution of (20) and (21) into (25) yields
dP,
. F — ZaYO*[AZe"“""Z + Bzemz]
2

— §4B8Y * A B cos 28z. (26)

The quantity of interest here is the true dissipation, the
real part of (26). Hence,

D(2) = 20 Re (Vo)[A2e 2% 4 B2e2e]

— 48 Im (V) A B cos 28z. (27)

It is observed here that a periodic term is present in a
case where there can be no question as to the damped
exponential nature of the traveling waves. This should
remove any intuitive doubts about the compatibility of
damped exponential solutions with periodic variations
in the dissipation. Eq. (27) shows that the periodic part
of the dissipation expression is associated with the
imaginary part of the characteristic admittance. It can
be shown that 8 Im (Vo) is usually of the same order of
magnitude as « Re (Yo) and therefore it cannot be neg-
lected.

APPLICATION
Total dissipation D, is obtained by integrating the
appropriate dissipation per unit length expression, (19)
or (27), over the length of the waveguide, z.e.,
22
Dy = f D(2)ds. (28)
21
It is observed that when (22 —2) equals an integral num-

ber of half wavelengths, the cosine term does not con-
tribute to the integral. In that case the total dissipa-
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tion is accurately given when it is assumed that the
power attenuation associated with each wave is
exp (—2a|z—z|). It is also seen that when the wave-
guide is many wavelengths long, the error introduced
by neglecting the cosine term is small.

The periodic part of the dissipation expression may
be neglected when one considers high Q transmission or
reflection cavities which are very nearly an integral
number of half wavelengths long at resonance, and
when one calculates the dissipation in long waveguides.
On the other hand, reflection cavities embodying reac-
tive terminations other than short circuits, cavities
partially filled with dielectric,®7 etc., are not necessarily
#A/2 in length at resonance. Therefore, in calculating
the Q of such cavities, the expressions for dissipation
given here should be used.

The periodic concentration of the dissipation could
also prove troublesome in attenuators. A case in point
is the metallized glass coaxial attenuator in which the
inner conductor is a fragile metal film. Attenuation is
entirely due to I2R loss, for which it may be shown that
B Im (Yy) =a Re (¥y) [see (27)]. Therefore, in the ex-
treme case of a reactively terminated attenuator, the
peak dissipation as a function of distance is twice the
average dissipation. The same situation, though to a
lesser degree, can also result from internal standing
waves in an otherwise matched attenuator.
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