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VI. CONCLUSIONS

A periodic structure consisting of a linear array of

conducting disks has been investigated, both theoret-

ically and experimentally. The resonator experiments

have established the fact that nonradiating surface

waves propagate along the structure. These are slow

waves, that is, their phase velocity is less than the

phase velocity of an electromagnetic wave in an un-

bounded medium.

The propagation constants for the “dipole mode”

have been experimentally determined for structures of

different dimensions. By using the radiating aperture

approach, the beamwidth has been calculated when

these periodic structures are used as end-fire antennas.

Exact expressions for the field have been set up. Sub-

ject to certain approximations, a secular equation has

been derived from which the propagation constants

may be calculated. Theoretical values are compared

with experiments.

The purity of the “dipole Imode” on the disk structure

has been verified by means of perturbation experiments.

The disk line has thus been found suitable for use as

an end-fire antenna, provided the “dipole mode” is

efficiently excited, without a great amount of direct

radiation from the feeding end.
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The Sinusoidal Variation of Dissipation

Along Uniform Waveguides*

GEORGE PERSKY~

Summary—Standing waves in a wave guide with dielectric

and/or metal wall losses generally give rise to expressions for power

dissipation per unit length containing a term which is a sinusoidal

function of the dktance along the waveguide. In the present paper

this phenomenon is explained and expressions for the dissipation are

derived. The development is carried out for TE and TM modes in a

uniform dielectric filled waveguide of arbitrary cross section, and

then again from the standpoint of transmission line theory. The

practical implications of the results are dkcussed.

INTRODUCTION

When a standing wave exists in a Iossy waveguide,

the dissipation of power per unit length as a function

of distance can generally be described by the sum of

two terms, one of which is sinusoidal. While this fact has

occasionally been recognized in one form or another,l–t

it is commonly overlooked in practice, and no detailed
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treatment for the single mode case has, to the author’s

knowledge, been available. One can see intuitively

that wall losses are greatest at the points of maximum

magnetic field and dielectric losses at points of maxi-

mum electric field. Power attenuation in each traveling

wave is therefore not proportional to e*2”’ as is often

assumed, and the improper use of such attenuation

factors can lead to serious errors in the calculation of

dissipation. This fact is not generally appreciated, al-

though it is well known that in a dissipative guide it is

not possible to speak of net power flow in terms of Pi..

and P,.~, since these quantities are not well defined.

The purpose of this paper is to provide a firm basis

for the accurate calculation of the distribution of dis-

sipation along the direction of propagation and to

point out the areas where calculations of this type are

indicated.

Fig. 1 shows a section of uniform dielectric filled

waveguicfe of arbitrary cross section with walls of

surface resistivity r and filled with a dielectric material

of conductivity u. The dissipation in this waveguide

will be found separately for the TE and TM mode

cases. The analysis will be carried out in terms of

normalized mode functions4 (which, it is recognized,

‘ N. Marcuvitz, “Waveguide Handbook, ” McGraw-Hill Book
Co., Inc., New York, N. Y., M.I.T. Rad. Lab. Ser., vol. 10; 1951.
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are only approximate when the boundaries are not Since Jd = UE and, under the small loss assumption,

truly Iossless). A self-contained alternate discussion I HI = IJWI , (7) may also be written in the form

deals with the problem from the transmission line point

of view. D(z) =
[“$ 1IHt+FI1’d+Ja\ Et+%1%, (8)

s
dz

m

where E and H are recognized to be phasors as well as

vectors. Eq. (8) can therefore be expanded in terms of
dj —z

its real and imaginary parts:

D(z) = $ [1 ReH, + ReH, [2+ I ImH, -+ ImE7,12]d~
Fig. l—Uniform dielectric filled waveguide.

TE MODE +~a[\Re E,+ ReE~12+ \Im E,+ ImE,12]ds. (9)

In terms of the normalized electric field mode func- S

tions, the incident and

written4 as

E,(r)
T

where the subscripts i

reflected electric fields may be When the zero of the z scale is, for conve nie rice, chosen

at a voltage maximum, V,(z) and V,(z) may be written

= Vj(z)e(J (1) V,(z) = l’l(z)e-~~”
r

V,(z) = V2(z)e’d”, (lo)

and Y denc)te incident and re-

flected, respectively. Applying

tion, one has

H~= –&X
T ‘iWp

which can be expanded as

lhla~well’s second equa- where VI(z) and Vz(z) are real positive amplitude fac-

tors. Substitution of (10) into (1) and (5) results in

[v@e(Q)]
(Re H, + Re H,)

(2)

[

b sin @z
—— —zo Xe(p)cosflz+ 1— V X e(p) [V,(z) – VI(Z)],

UP W

H, = – L [VV$Z) X e(e) + Vj(z)v X e(e)]. (3)
T jq.L

In accordance with the small loss assumption, voltage

changes over small distances depend almost entirely

on e*@z so that one can approximate

Vv;(z) = T jw;(z)zo, (4)

where the minus sign corresponds to the incident wave,

and the plus sign to the reflected wave. Therefore,

Referring to Fig. 1, the power dissipated in a volume

filling the cross section and of differential length dz,

which will be denoted by —dP, is given by

–dP=dz
[$

[Jd2Yd,+f : IJ.12dS] (Q
.s

where Jw is the current density on the waveguide wall,

and ]~ the current density in the dielectric. Defining

D(z) as the dissipation per unit length at point z, one has

UZ) = -:=$ lJW]2YdJ+f +-lJ~[’~s (T)
s

(Im Hi + Im H,)

[

–P—— —zo Xe(p)sin@z+ -V X e(p)- [V,(z)+ V2(Z)],

~K @P

(Re E, + Re E,) = [VI(Z) + V,(z) ]e(@) cospz,

(Im Et + Im E,) = [–VI(Z) + V,(z) ]e(@) sinpz. (11)

It is seen that when these expressions are substituted

into (9) the cross terms typified by

[

@

1[
sin @z

— zo X e(e) cos /32 . —V X e(p)
@/J @/J 1

vanish and one obtains

D(z) = (V,2 + V,’) ~$[~’le(e) 12+ I VXe(p)12]rdZ

+ 2V,V2 Cos 2pz &$[l VXe(p)12–~2[ e(p) ]’]rdt

+ (v,’+ Vz’ + 2VIV, Cos 2BZ)U J le(Q)l’dL (12)
s

where, for convenience, the z dependence of VI and l~z

is no longer explicitly shown. The last inte~ral is equal

to unity by definition. The other twc) integrals are
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constants of the problem, i.e., they have no z depend-

ence. One can therefore define

where Z@ has been substituted for OP. In terms of G1

and Gz, (12) gives the dissipation per unit length as

~(Z) = (VIZ+ V;)(G, + a) + ZV1V2(G2 + U) cos 282. (15)

Nothing has yet been said about the (exponentially

damped) z dependence of VI and VZ,

VI(Z) = V1(0)e–”’, Vz(z) = V.Z(0) es’,

which, since the damping is small, may usually be

neglected. One can also express VZ as ) r I VI, where r

is the reflection coefficient of the load. Eq. (15) may

therefore be rewritten such that the dependence of

D(z) on the termination becomes explicit.

D(z) =v,2[(1+ I r \2)(G,+u)+2 j r [ (Gz+u) COS’WZ]. (16)

It must be remembered that z is measured from a volt-

age maximum, not from the termination.

Eq. (16) shows that there is a periodic term in the

dissipation expression which depends on the load re-

flection coefficient magnitude. For a unity reflection

coefficient the variation in the dissipation is greatest.

In the absence of a reflected wave, dissipation is a sim-

ple exponential function of z. The constants GI and

G, are in general unequal; GZ may even be zero. This

point appears to have been overlooked even by authors

who were aware of the basic phenomenon. h

TABLE I

VAI.UES OF G, AND G, FOR TE,o MODE IN X-BAND WAVEGUIDE

Frequency G, G.z

8 kmc 2.4 X10–4 1.08 X10-4
10 kmc 1 .12 X1 O-4 –5.8 X10-7
12 kmc 5.4 X1 O-6 –1.56x10-5

Table I gives typical values of G1 and G2 calculated

for an empty brass X-band waveguide operated in the

TEIO mode. It is of interest to note that the sign of G2
is positive at 8 kmc and negative at 10 kmc. Near 10

kmc Gz, and consequently the periodic part of the dissi-

pation, are vanishingly small. The physical explanation

for this is that the transverse and longitudinal mag-

netic field components of the traveling waves do not

add in phase. The transverse components add at what

are conventionally called current maxima and the longi-

tudinal components at the voltage maxima. In the 10-

5 H. E. King, “Rectangular waveguide theoretical CW average
power rating, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQU~S, vol. MTT-9, pp. 349–357; July, 1961. See especially p. 356.
!Eq. (21) is inapplicable in the TE mode case.

kmc region, the contributions of the two components

to the dissipation are about equal, so that Gz is small

and dissipation occurs relatively uniformly along the

waveguide. Above 10 kmc the transverse component is

predominant, Gz is negative, and maximum dissipation

occurs at the current maxima. Below 10 kmc the longi-

tudinal component is mainly responsible for the power

loss so that G2 is positive and the maximum dissipation

coincides with the voltage maxima.

TM MODE

The analysis in the TM case is carried out in the

same way as that in the TE case and only the results

need be stated here.

D(z) = (V,2 + V,’)(G, + a) + 2VIV,(G, + CT)COS2/32, (17)

where

(18)

Here h(p) is the normalized magnetic field mode func-

tion.4 Eq. (17) may also be expressed in terms of the

reflection coefficient of the termination. When this has

been done, the TE and TM cases may be summarized

in the equation

D(z) = V,’[(1 + [ r [2)(G; +fJ)

+ 2 ] r I (Gt + 6-) Cos 2f?z]yM. (19)

TRANSMISSION LINE APPROACH

The dissipation per unit length can also be derived

using the solution of the transmission line equations as

a starting point. The result is equally applicable to

TE, TM and TEM mode transmission lines.

It is well known that for a transmission line charac-

terized by Z, a series impedance per unit length, and Y,

a shunt admittance per unit length, the voltage and

current solutions may be written

v = Ae–~# + Be~. (20)

I = YOIAe-~z – Bey’] (21)

Yo = v’Y/z. (23)

To a very good approximation the choice of z = O at a

voltage maximum assures that both A and B be real

and positive.

The (complex) power flow toward the load at any

point z is

P.(z) = V(Z) I*(Z), (24)
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and the (complex) dissipation which is the decrease in

P.(z) with z is

dP= d(VI*)
—— ._—. .

dz dz
(25)

Substitution of (20) and (21) into (25) yields

dPC
—— . 2a YO*[A2e–z”Z + Bzez””]

dz

– j4/3 YO*A B COS2~z. (26)

The quantity of interest here is the true dissipation, the

real part of (26). Hence,

D(z) = 2CYRe ( YJ [A2e–z”’ + B2e2”z]

– 4@Im ( YO)AB (COS2BZ. (27)

It is observed here that a periodic term is present in a

case where there can be no questicm as to the damped

exponential nature of the traveling waves. This should

remove any intuitive doubts about the compatibility of

damped exponential solutions with periodic variations

in the dissipation. Eq. (27) shows that the periodic part

of the dissipation expression is associated with the

imaginary part of the characteristic admittance. It can

be shown that @ Im ( Yo) is usually of the same order of

magnitude as a Re ( YO) and therefore it cannot be neg-

lected.

APPLICATION

Total dissipation D, is obtained! by integrating the

appropriate dissipation per unit length expression, (19)

or (27), over the length of the wa veguide, i.e.,

S
%

D, = D(z)dz.

21

(28)

It is observed that when (z, – z,) equals an integral num-

ber of half wavelengths, the cosine term does not con-

tribute to the integral. In that case the total dissipa-

tion is accurately given when it is assumed that the

power attenuation associated with eacih wave is

exp ( —2al 22 —zl I ). It is also seen that when the wave-

guide is many wavelengths long, the error introduced

by neglecting the cosine term is small.

The periodic part of the dissipation expression may

be neglected when one considers high Q transmissic)n or

reflection cavities which are very nearly an integral

number of half wavelengths long at resonance, and

when one calculates the dissipation in long waveguides.

On the other hand, reflection cavities embodying reac-

tive terminations other than short circuits, cavities

partially filled with dielectric,b” etc., are not necessarily y

nA/2 in length at resonance. Therefore, in calculating

the Q of such cavities, the expressions for dissipation

given here should be used.

The periodic concentration of the dissipation could

also prove troublesome in attenuators. A case in point

is the metallized glass coaxial attenuator in which the

inner conductor is a fragile metal film. Attenuaticm is

entirely due to 12R loss, for which it may be shown that

~ Im ( Yo) = a Re ( Yo) [see (27)]. Therefore, in the ex-

treme case of a reactively terminated attenuator, the

peak dissipation as a function of distance is twice the

average dissipation. The same situation, though to a

lesser degree, can also result from internal standing

waves in an otherwise matched attenuator.
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